Abstract

Based on a non-linear mathematical model of lateral buckling of a slender beam with a narrow rectangular cross section, the variational formulation of the two-parametric optimization problem is given in the dimensionless form. An optimal shape is obtained by solving the variational problem using the Rayleigh–Ritz method with the orthogonal system of trigonometric functions. By a partial solution of the Euler–Lagrange differential equation of the variational problem, a proof is given that in the case of the optimal shape, a maximal reference stress according to the total strain energy theory is constant along the beam. An example of extrapolation of the two-parametric optimization problem solution is represented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.