Abstract

The Kiewitt spherical reticulated shell of triangular pyramid system is taken as the object of this study; a macroprogram of parametric modeling is developed by using the ANSYS Parametric Design Language. The minimum structural total weight is taken as the objective function, and a shape optimization program is proposed and compiled by adopting the sequence two-stage algorithm in FORTRAN environment. Then, the eigenvalue buckling analysis for Kiewitt spherical reticulated shell of triangular pyramid system is carried out with the span of 90 m and rise-span ratio of 1/7~1/3. On this basis, the whole nonlinear buckling process of the structure is researched by considering initial geometrical imperfection. The load-displacement curves are drawn, and the nonlinear behaviors of special nodes are analyzed. The structural nonlinear behaviors affected by rise-span ratio are discussed. Finally, the stability of reticulated shell before and after optimization is compared. The research results show that (1) users can easily get the required models only by inputting five parameters, i.e., the shell span (S), rise (F), latitudinal portions (Kn), radial loops (Nx), and thickness (T). (2) Under the conditions of different span and rise-span ratio, the optimal grid number and bar section for the Kiewitt spherical reticulated shell of triangular pyramid system existed after optimization; i.e., the structural total weight is the lightest. (3) The whole rigidity and stability of the Kiewitt spherical reticulated shell of triangular pyramid system are very nice, and the reticulated shell after optimization can still meet the stability requirement. (4) When conducting the reticulated shell design, the structural stability and carrying capacity can be improved by increasing the rise-span ratio or the rise. (5) From the perspective of stability, the rise-span ratio of the Kiewitt spherical reticulated shell of triangular pyramid system should not choose 1/7.

Highlights

  • The reticulated shell is a major structural style of spatial structures, and it has advantages of reasonable force, rich structure type, convenient installation, etc., which has broad applications [1].The spherical reticulated shell is a spatial structure of bar system, and its bar system is generated by connecting the nodes according to certain rules

  • The research results show that (1) users can get the required models only by inputting five parameters, i.e., the shell span (S), rise (F), latitudinal portions (Kn), radial loops (Nx), and thickness (T). (2) Under the conditions of different span and rise-span ratio, the optimal grid number and bar section for the Kiewitt spherical reticulated shell of triangular pyramid system existed after optimization; i.e., the structural total weight is the lightest

  • The studies of parametric modeling method based on the ANSYS Parametric Design Language (APDL) are not many, and relevant research rarely involves the specific work of shape optimization and stability analysis for the Kiewitt spherical reticulated shell of triangular pyramid system

Read more

Summary

Introduction

The reticulated shell is a major structural style of spatial structures, and it has advantages of reasonable force, rich structure type, convenient installation, etc., which has broad applications [1].The spherical reticulated shell is a spatial structure of bar system, and its bar system is generated by connecting the nodes according to certain rules. (2) Under the conditions of different span and rise-span ratio, the optimal grid number and bar section for the Kiewitt spherical reticulated shell of triangular pyramid system existed after optimization; i.e., the structural total weight is the lightest. The studies of parametric modeling method based on the ANSYS Parametric Design Language (APDL) are not many, and relevant research rarely involves the specific work of shape optimization and stability analysis for the Kiewitt spherical reticulated shell of triangular pyramid system.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call