Abstract
AbstractMany eukaryotic cells use the active waving motion of flexible flagella to self-propel in viscous fluids. However, the criterion governing the selection of particular flagellar waveforms among all possible shapes has proved elusive so far. To address this question, we derive computationally the optimal shape of an internally forced periodic planar flagellum deforming as a travelling wave. The optimum is here defined as the shape leading to a given swimming speed with minimum energetic cost. To calculate the energetic cost, we consider the irreversible internal power expended by the molecular motors forcing the flagellum, only a portion of which is dissipated in the fluid. This optimization approach allows us to derive a family of shapes depending on a single dimensionless number quantifying the relative importance of elastic to viscous effects: the Sperm number. The computed optimal shapes are found to agree with the waveforms observed on spermatozoon of marine organisms, thus suggesting that these eukaryotic flagella might have evolved to be mechanically optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.