Abstract

The Richardson exact solution for the reduced BCS Hamiltonian is applied to examine how sensitive are the pairing characteristics (condensation energy, spectroscopic gap, parity gap) to a specific configuration of single-electron energy levels in nanosize metallic grains. Using single-electron energy spectra in parallelepiped-shaped potential boxes with various volumes and aspect ratios as a model of energy levels in grains, we show that this sensitivity is extremely high. Due to such an extreme sensitivity, the detailed shape of grains cannot be detected through the pairing characteristics, averaged over an ensemble of grains, even in the case of relatively small size dispersion within this ensemble. We analyse the effect of the pairing interaction on the excited-level spacings in superconducting grains and comment on the influence of shape-dependent fluctuations in single-electron energy spectra on the possibility to reveal this effect through tunnelling measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call