Abstract

Tubular structures are in high demand in robotics, medicine, and electronics. They are expected to match different shapes under loading and simultaneously exhibit certain mechanical behavior, e.g., specific radial strength and local flexibility, that poses a complex engineering design task. Herein, strategies to achieve programmable shape morphing in patterned tubular structures are explored, whose mechanical properties for all types of deformation modes can be tailored on demand. The general design problem is formulated, and the programmable response for fundamental—expansion, bending, and twisting—modes activated by tension and pressurization is demonstrated. The design problem for expansion modes is solved analytically; the numerical results agree well with the experimental data for stereolithography three‐dimensional printed cellular tubes. The effects of loading and boundary conditions on the deformed shapes and the structural mechanical response are analyzed. Algorithm‐based design strategies are proposed to achieve quantitative and automatic design for complex deformation modes. The possible use of the proposed structures is also discussed with respect to several applications. The findings pave the way for multifunctional tubular structures by exploring the pluridimensional space of the geometric parameters of metamaterial patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.