Abstract

We study the kinematics and dynamics of a highly compliant membrane disk placed head-on in a uniform flow. With increasing flow velocity, the membrane deforms nonlinearly into increasingly parachutelike shapes. These aerodynamically elongated materials exhibit a modified drag law, which is linked to the elastohydrodynamic interactions. We predict the unsteady structural response of the membranes using a nonlinear, aeroelastic model-in excellent agreement with experimental measurements of deformations and force fluctuations. With simultaneous membrane interface tracking, force measurements and flow tracing, we reveal that a peculiar skewness in the membrane's oscillations triggers turbulence production in the wake, thereby modulating the drag. The present work provides a demonstration of the complex interplay between soft materials and fluid turbulence, leading to new, emergent system properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.