Abstract

We generalize a discrete elastic scheme for automated computer-aided analysis of shaping, stress-strain state, and safety factors of structural elements of single-shell parachutes; various canopy layouts and design features of the parachutes are considered. The developed algorithms and programs are based on the sketch diagram of the parachute design, the lumped mass method, and the database of mass, stiffness, and strength characteristics of parachute structural materials. As the design features of parachutes, we consider slots and structural vents in the canopy, irregular reinforcing framework, ribbing, special pockets at the canopy outer edge, non-flat initial configuration of the canopy, the use of inside (including central) lines in addition to the main, outside shroud lines, canopies made from different fabrics that have different strength and air permeability, and others. It is also possible to consider functional and military damage of the parachute structure, which affect its durability. Specific examples are give to demonstrate the capabilities of the automated computational system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call