Abstract
ABSTRACTObservations of the large superfast rotator (436724) 2011 UW158 were carried out at the Observatório Astronômico do Sertão de Itaparica (OASI, Brazil) between May and October 2015, before and after it made a close approach to Earth in July 2015. These observations allowed us to obtain 11 light curves, and additional observations at the San Pedro Mártir Observatory (Baja California, Mexico) in March 2017 provided a light curve. From the obtained light curves we could confirm the fast rotation, 0.61071 h, of the near-Earth object (NEO) and by applying the inversion method, we derived a prograde sense of rotation and a quite elongated shape model with rough dimensions a/b = 2.0, a/c = 4.2, and b/c = 2.1. The best determined pole directions suggest that the maximum amplitude of the light curves was obtained from an equatorial view. The reconstructed shape models are in good agreement with the shape elongation and asymmetric shape reported by radar observations. As 2011 UW158 has an uncommon rotation period for asteroids larger than ∼200 m, we used the determined parameters to calculate the minimum internal cohesion strength required to keep its structure intact. We have found that a minimum cohesion ranging from 176 to 295 Pa is required in case the NEO has a composition similar to that of C-type asteroids, and from 364 to 451 Pa for the E-type. Therefore, we suggest that 2011 UW158, if not monolithic, requires a significant cohesion force to keep it spinning so fast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.