Abstract

An active flexural hinge has been developed and incorporated into the transmission of a prototype flapping-wing robot. The multilayered flexure, which is constructed from a shape memory polymer and a polyimide film, showed controllable stiffness under change in temperature. At room temperature, the flexure had a bending stiffness of 572 mN·mm; when warmed to 70°C, the stiffness was 11 mN·mm. The resulting single-wing flapping system demonstrated up to an 80% change in generated lift without modification of the waveform of the main driving piezoelectric actuator. Such active stiffness tunable flexure joints could be applied to any flexural miniature mobile robot and device mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.