Abstract

Shape memory poly(β-hydroxythioether) foams were produced using organobase catalyzed reactions between epoxide and thiol monomers, allowing for the rapid formation of porous media within approximately 5 min, confirmed using both rheology and physical foam blowing. The porous materials possess ultralow densities (0.022 g × cm-3) and gel fractions of approximately 93%. Thermomechanical characterizations of the materials revealed glass transition temperatures tunable from approximately 50 to 100 °C, elastic moduli of approximately 2 kPa, and complete strain recovery upon heating of the sample above its glass transition temperature. The foams were characterized for their ability to take up oil from an aqueous multilayered ideal environment, revealing more than 2000% mass of oil (relative to the foam mass) could be collected. Importantly, while post-fabrication functionalization was possible with isocyanate chemistry followed by addition of hexadecanethiol or 3,3-bis(hexadecylthio)propan-1-ol, the oil collection efficiency of the system was not significantly enhanced, indicating that these materials, as porous media, possess unique attributes that make them appealing for environmental remediation without the need for costly modifications or manipulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.