Abstract

Laminar jamming (LJ) technology is a hot topic because it allows for the transition from conventionally quick, precise, and high-force rigid robots to flexible, agile, and secure soft robots. This article introduces a novel conceptual design of meta-laminar jamming (MLJ) actuators with a polyurethane shape memory polymer (SMP)-based meta-structure fabricated by 4D printing (4DP). The sustainable MLJ actuators behave as soft/hard robots via hot and cold programming accompanied by negative air pressure. The advantage of MLJ actuators over conventional LJ actuators is that a continuous negative air pressure is not required to stimulate the actuator. SMP meta-structures with circle, rectangle, diamond, and auxetic shapes are 4D printed. Mechanical properties of the structures are evaluated through three-point bending and compression tests. Shape memory effects (SMEs) and shape recovery of meta-structures and MLJ actuators are investigated via hot air programming. MLJ actuators with auxetic meta-structure cores show a better performance in terms of contraction and bending with 100% shape recovery after stimulation. The sustainable MLJ actuators have the capabilities of shape recovery and shape locking with zero input power while holding 200 g weight. The actuator can easily lift and hold objects of varying weights and shapes without requiring any power input. This actuator has demonstrated its versatility in potential applications, such as functioning as an end-effector and a gripper device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.