Abstract

The evolution of microstructure, reverse martensitic transformation and the correlated influence on shape memory effect was investigated in as-cast and directionally solidified dual-phase NiMnGaTb alloys. The directionally solidified alloys exhibit single-crystal microstructure, preferred dendrite microstructure, and mussy dendrite microstructure in the specimens grown at a withdrawal rate (v) of 10, 50 and 200, and 1000 μm/s, respectively. The precipitates dispersively distribute in the martensite matrix for the directionally solidified alloys. With the refined grains and particle precipitates, the reverse martensitic transformation gradually shifts to lower temperatures and the temperature span is significantly broadened. The directional solidification technology can effectively enhance the strains recovered due to shape memory effect (esme) and decrease the compressive stress required to trigger the reorientation of twins (σ) via the realization of preferred orientation, while the maximal esme and minimum σ can reach 4.96% and 14 MPa in v = 10 μm/s specimens, respectively. The formation of dendrite morphology degrades the shape memory strain, and esme decreases with the growth of secondary dendritic arms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.