Abstract
The present paper studies the feasibility, through physical experimentation, of efficient and low-cost macrostrain sensors, based on shape-memory alloy technologies. The motivation of this work is to explore the intrinsic relation between electrical resistivity and strain, associated with the development of the stress induced martensitic transformation in superelastic shape-memory alloys. This property enables the material to endure deformations up to 8% without any residual strains, making shape-memory alloy wires excellent candidates for kernel elements in innovative strain transducers with dynamic ranges 4 to 5 times larger than the currently available strain transducers. An experimental prototype of a beam with a set of SMA macrostrain sensors is presented, featuring a timed scanning sequential algorithm to successfully perform the resistance readings. The aim of this work is to provide an additional insight into the potential of SMAs in new macrostrain measurement applications. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.