Abstract

In general, shape memory alloy (SMA) cables do not resist in compression and, thus, their applications are limited. This study suggests a superelastic SMA bar in bending to be used to overcome the above problem. The objectives of this study are to analyze the characteristics of the bending behavior of an SMA bar and to prove its seismic applicability, especially to restrain openings in bridges. Single and double bending tests are conducted with varying loading speeds and maximum displacements. The loading and the unloading stiffness are estimated from the force-displacement curves, and the equivalent damping ratio of each test is assessed. The SMA bar shows the same stiffness hardening, during bending and under tension which appears to be due to stress-induced-martensite hardening. Increasing the loading speed does not influence the stiffness of the SMA bar with a single bend, but the stiffness of the double bending bar is about five times that of the single bending bar. This study also introduces the use of SMA bending bars as a seismic restrainer for bridges. The SMA bars are assessed as seismic restrainers for a three-span-simply-supported bridge in a zone of moderate seismic activity. The bars reduce the openings at the internal hinges and the pounding force on abutments. Thus, the SMA bending bars are assessed to prevent the unseating at internal hinges and cracks on abutments. This study shows the applicability of the SMA bending bars as a seismic restrainer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call