Abstract

Abstract Conventional vortex generators (VG) in aeronautical applications are static vanes mounted on aircraft surfaces used to improve aircraft efficiency during low speed operations. However, during the cruise phase of flight, these static devices are always deployed and produce drag penalties. With the goal of improving aircraft efficiency, Boeing in collaboration with NASA Glen Research Center have developed and successfully flight tested environmentally activated SMART-VGs that repeatedly and accurately retract during cruise and deploy during take- off and landing. This application is distinctively enabled by the ability of shape memory alloy (SMA) actuation to produce large work outputs in compact volumes and operate as both a sensor and actuator. The SMART-VG project highlighted here was built upon recent advancements in SMA rotary actuation technology that included improved alloy systems, design tools, best practices, published standards and high-level wind tunnel and flight test demonstrations. This program successfully matured and validated the targeted alloy development and associated design processes in a unique way by demonstrating shape memory alloy reconfigurable technology (SMART) in-flight. The data from this flight test is being used to optimize a next generation design of the SMART-VGs that will be tested in 2022.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.