Abstract

This paper deals with the following problem: What can be said about the shape of an object if a certain invariant of it is known? Such a, herein called, shape invariant interpretation problem has not been studied/solved for the most of invariants, but also it is not known to which extent the shape interpretation of certain invariants does exist. In this paper, we consider a well-known second-order affine moment invariant. This invariant has been expressed recently Xu and Li (2008) as the average square area of triangles whose one vertex is the shape centroid while the remaining two vertices vary through the shape considered. The main results of the paper are (i) the ellipses are shapes which minimize such an average square triangle area, i.e., which minimize the affine invariant considered; (ii) this minimum is $$1/(16\pi ^2)$$1/(16?2) and is reached by the ellipses only. As by-products, we obtain several results including the expression of the second Hu moment invariant in terms of one shape compactness measure and one shape ellipticity measure. This expression further leads to the shape interpretation of the second Hu moment invariant, which is also given in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.