Abstract

Abstract Soluble solids content (SSC) is an important quality attribute in determining fruit maturity and grading after harvest. This study explored the potential of hyperspectral imaging (HSI) coupled with multivariate analysis in visible and near-infrared (Vis-NIR, 380−1030 nm) and near-infrared (NIR, 874−1734 nm) regions for measuring SSC in winter jujube fruit. The effectiveness of applying area normalization to reduce the influence of non-uniform light distribution on the spherical surface of intact fruit was explored. Then linear and non-linear regression models were developed and compared in two spectral ranges. The performance obtained by the least squares-support vector machine (LS-SVM) models based on successive projection algorithm (SPA) was satisfactory. The determination coefficient of prediction (Rp2) and residual predictive deviation (RPD) were 0.873 and 2.81 for the NIR range, and 0.894 and 3.07 for the Vis-NIR range, respectively. The SPA-LSSVM models were applied on the pixel-wise and object-wise spectra of region of interest before and after area normalization for comparison of visualization performance of corresponding prediction maps for SSC. Area normalization could effectively correct the non-uniform reflectance on a spherical object. The overall results indicated that HSI could be used to non-destructively predict and visualize SSC in winter jujubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.