Abstract

Leveraging the anisotropic shape of DNA-functionalized nanoparticles holds potential for shape-directed crystallization of a wide collection of superlattice structures. Using coarse-grained molecular dynamics simulations, we study the self-assembly of a binary mixture of cubic gold nanoparticles, which are functionalized by complementary DNA strands. We observe the spontaneous self-assembly of simple cubic (SC), plastic body-centered tetragonal (pBCT), and compositionally disordered plastic body-centered tetragonal (d-pBCT) phases due to hybridization of the DNA strands. We systematically investigate the effect of length, grafting density, as well as rigidity of the DNA strands on the self-assembly behavior of cubic nanoparticles. We measure the potential of mean force between DNA-functionalized nanocubes for varying rigidity of the DNA strands and DNA lengths. Using free-energy calculations, we find that longer and flexible DNA strands can lead to a phase transformation from SC to the pBCT phase due to a gain in entropy arising from the orientational degrees of freedom of the nanocubes in the pBCT phase. Our results may serve as a guide for self-assembly experiments on DNA-functionalized cubic nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call