Abstract

We propose a novel framework for contour based object detection and recognition, which we formulate as a joint contour fragment grouping and labeling problem. For a given set of contours of model shapes, we simultaneously perform selection of relevant contour fragments in edge images, grouping of the selected contour fragments, and their matching to the model contours. The inference in all these steps is performed using particle filters (PF) but with static observations. Our approach needs one example shape per class as training data. The PF framework combined with decomposition of model contour fragments to part bundles allows us to implement an intuitive search strategy for the target contour in a clutter of edge fragments. First a rough sketch of the model shape is identified, followed by fine tuning of shape details. We show that this framework yields not only accurate object detections but also localizations in real cluttered images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.