Abstract

Presents a non-feature-based solution to the problem of computing the shape of curved surfaces from texture information. First, the use of local spatial-frequency spectra and their moments to describe texture is discussed and motivated. A new, more accurate method for measuring the local spatial-frequency moments of an image texture using Gabor elementary functions and their derivatives is presented. Also described is a technique for separating shading from texture information, which makes the shape-from-texture algorithm robust to the shading effects found in real imagery. Second, a detailed model for the projection of local spectra and spectral moments of any surface reflectance patterns (not just textures) is developed. Third, the conditions under which the projection model can be solved for the orientation of the surface at each point are explored. Unlike earlier non-feature-based, curved surface shape-from-texture approaches, the assumption that the surface texture is isotropic is not required; surface texture homogeneity can be assumed instead. The algorithm's ability to operate on anisotropic and nondeterministic textures, and on both smooth- and rough-textured surfaces, is demonstrated. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.