Abstract

A new method for focus measure computation is proposed to reconstruct 3D shape using image sequence acquired under varying focus plane. Adaptive histogram equalization is applied to enhance varying contrast across different image regions for better detection of sharp intensity variations. Fast discrete curvelet transform (FDCT) is employed for enhanced representation of singularities along curves in an input image followed by noise removal using bivariate shrinkage scheme based on locally estimated variance. The FDCT coefficients with high activity are exploited to detect high frequency variations of pixel intensities in a sequence of images. Finally, focus measure is computed utilizing neighborhood support of these coefficients to reconstruct the shape and a well-focused image of the scene being probed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.