Abstract

This study investigates the shape evolution of the pinholes on the bloom surfaces, which are originated from the continuous casting process, during multi-pass hot bar rolling. It is important to track the shape evolution of the pinholes since they can be formed as the sharp surface cracks after hot bar rolling and can initiate the surface bursts in the cold forging process. It is very hard to track the deformation behavior of the pinholes with detection tools during hot rolling, so the numerical simulations can be properly utilized. In general, the size of the pinholes in the bloom surface is order of micrometer although the bloom size is order of millimeter. This size discrepancy between them makes it difficult to discretize the domain including the pinholes for the finite element (FE) simulations. To overcome this limitation of the conventional FE simulation, multi-scale technique coupling the macro and micro models was developed in current study. This technique was implemented into the commercial simulation code, DEFORM-3D. The developed multi-scale simulation technique was capable of simulating the shape evolution of the pinholes through multi-pass hot bar rolling successfully. It is concluded that aspect ratio of the initial pinhole should be larger than 2.0 approximately to prevent it folded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.