Abstract

Fluid viscosity is known to influence hydrodynamic forces on a floating body in motion, particularly when the motion amplitude is large and the body is of bluff shape. While traditionally these hydrodynamic force or force coefficients have been predicted by inviscid-fluid theory, much recent advances had taken place in the inclusion of viscous effects. Sophisticated Reynolds-Averaged Navier–Stokes (RANS) software are increasingly popular. However, they are often too elaborate for a systematic study of various parameters, geometry or frequency, where many runs with extensive data grid generation are needed. The Free-Surface Random-Vortex Method (FSRVM) developed at UC Berkeley in the early 2000 offers a middle-ground alternative, by which the viscous-fluid motion can be modeled by allowing vorticity generation be either turned on or turned off. The heavily validated FSRVM methodology is applied in this paper to examine how the draft-to-beam ratio and the shaping details of two-dimensional cylinders can alter the added inertia and viscous damping properties. A collection of four shapes is studied, varying from rectangles with sharp bilge corners to a reversed-curvature wedge shape. For these shapes, basic hydrodynamic properties are examined, with the effects of viscosity considered. With the use of these hydrodynamic coefficients, the motion response of the cylinders in waves is also investigated. The sources of viscous damping are clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call