Abstract

The evolution of the interface propagation in a slowly rotating half-filled horizontal cylinder is studied using MRI. Initially, the cylinder contains two axially segregated bands of small and large particles with a sharp interface. The process of the formation of the radial core is clearly captured, and the shape and the velocity of the propagating front are calculated by assuming a one-dimensional diffusion process along the rotation axis of the cylinder and a separation of time scales associated with segregation in the radial and axial directions. We found that the interfacial dynamics are best described when a concentration dependent diffusion process is assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.