Abstract

The shape dynamics of soft, elastic particles in an unbounded simple shear flow is investigated theoretically under Stokes flow conditions. Three types of motion-steady-state, trembling, and tumbling-are predicted, depending on the shear rate, elastic shear modulus, and initial particle shape. The steady-state motion is found to be always stable. In addition, the existence of a trembling regime is documented for the first time in nonvesicle systems, and a complete phase diagram is developed. The rheological properties of dilute suspensions of such soft particles generally exhibit shear-thinning behavior and can even display negative intrinsic viscosity for sufficiently soft particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call