Abstract

The aim of this study is to design the shapes of the surfaces of sliders to meet the load demands specified by the designers. A direct problem solver is built to provide solutions for pressure distribution between the slider and the rotor for various geometric conditions and load demands. The direct problem solver is then incorporated with the conjugate gradient method so as to develop an inverse method for the slider surface shape design. The specified load demands considered in this study are categorized into two kinds: (1) specified pressure distribution within the fluid film and (2) specified resultant forces plus specified centers of load. Several cases at various bearing numbers are tested to demonstrate the validity of the inverse shape design approach. Results show that the surface shape of a slider can be designed efficiently to comply with the specified load demands considered in the present study by using the inverse method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.