Abstract
The uniform Sn-doped CuO nanoparticles were synthesized by a simple solution method at a low temperature. The prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy techniques (HRSEM, HRTEM, SAED, STEM and EDS elemental mapping), atomic force microscopy (AFM), UV/Vis spectroscopy, nitrogen physisorption (BET) and by evaluation of the catalytic activity on the degradation of Rhodamine B. The tin doping had a considerable influence on the morphology of CuO. The gradual narrowing of the particles morphology in the crystallographic [010] direction was observed with increasing the dopant concentration. The plate-like, rectangularsquare and rod-like CuO nanoparticles were obtained. The mechanism of a crystal growth of CuO associated with doping is proposed. The tin doping also affected the structural and optical properties of CuO. Increasing the amount of a dopant led to a red-shift of a band gap from 1.33 to 1.18eV. The incorporation of tin into the structure of copper oxide was confirmed by XRD and distribution of tin mapped by EDS analysis. The good catalytic properties of the as-prepared doped material were demonstrated by the enhanced catalytic removal of Rhodamine B in the presence of H2O2. The undoped CuO nanosheets reached only 24% efficiency in the removal of Rhodamine B within two hours. The best result exhibited CuO_050Sn sample containing 4at.% of tin and the degradation of Rhodamine B reached 99% within the same time. We have demonstrated a simple, scalable process for the preparation of catalytically very active Sn-doped CuO nanoparticles with varying properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.