Abstract

Cu3TeO6 (CTO) has been synthesized by hydrothermal synthesis applying different pH values without any template or a calcination step to control the crystalline phase and the morphology of nanoparticles. The physicochemical properties characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy techniques revealed that the pH values significantly influence the crystal growth. In acidic media (pH = 2), crystal growth has not been achieved. At pH = 4, the yield is low (10%), and the CTO presents irregular morphology. At pH = 6, the yield increases (up to 71%) obtaining an agglomeration of nanoparticles into spherical morphology. At basic conditions (pH = 8), the yield increases up to 90% and the morphology is the same as the sample obtained at pH = 6. At high basic conditions (pH = 10), the yield is similar (92%), although the morphology changes totally to dispersed nanoparticles. Importantly, the as-prepared CTO semiconductor presents photocatalytic activity for H2 production using triethanolamine as a sacrificial agent under visible light illumination. The results also revealed that the nanoparticles agglomerated in a spherical morphology with larger surface area presented almost double activities in H2 production compared to heterogeneously sized particles. These results highlight the suitable optoelectronic properties, including optical band gap, energy levels, and photoconductivity of CTO semiconductors for their use in photocatalytic H2 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.