Abstract

The ability to control the shape of metal nanocrystals allows us to not only maneuver their physicochemical properties but also optimize their activity in a variety of applications. Heterogeneous catalysis, in particular, would benefit tremendously from the availability of metal nanocrystals with controlled shapes and well-defined facets or surface structures. The immediate benefits may include significant enhancements in catalytic activity and/or selectivity along with reductions in the materials cost. We provide a brief account of recent progress in the development of metal nanocrystals with controlled shapes and thereby enhanced catalytic performance for several reactions, including formic acid oxidation, oxygen reduction, and hydrogenation. In addition to monometallic nanocrystals, we also cover a bimetallic system, in which the two metals are formulated as alloyed, core-shell, or core-frame structures. We hope this article will provide further impetus for the development of next-generation heterogeneous catalysts essential to a broad range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.