Abstract

Robust control over the positions, orientations, and assembly of nonspherical colloids may aid in the creation of new types of structured composite materials that are important from both technological and fundamental standpoints. With the use of lithographically fabricated equilateral polygonal platelets, we demonstrate that colloidal interactions and self-assembly in anisotropic nematic fluids can be effectively tailored via control over the particles' shapes. The particles disturb the uniform alignment of the surrounding nematic host, resulting in both a distinct equilibrium alignment and highly directional pair interactions. Interparticle forces between polygonal platelets exhibit either dipolar or quadrupolar symmetries, depending on whether their number of sides is odd or even, and drive the assembly of a number of ensuing self-assembled colloidal structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.