Abstract

The cubic and spherical shaped iron pyrite (FeS2) nanocrystals were synthesized in a pure phase form by an efficient hot injection method. These FeS2 nanocrystals were used as a counter electrode (CE) alternative to the conventional Pt CE in dye-sensitized solar cells (DSSCs) owing to its tremendous optical properties and low-cost. The obtained FeS2 nanocrystalline materials with excellent shape and phase purity were confirmed through XRD and Raman spectroscopy data. From Tafel, and impedance spectroscopy studies, the catalytic activity FeS2 CEs are found to be comparable with that of Pt CE. Along with the I3−/I− electrolyte, photo-conversion efficiency is found to be 6.9% (spherical), 6.2% (cubic) for the FeS2 CE, and 7% for Pt CE. The excellent performance of the FeS2 CE in DSSCs makes it a distinctive choice among the various CE materials studied including low-cost photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.