Abstract

We recently introduced an algorithm for spherical parametrization and remeshing, which allows resampling of a genus-zero surface onto a regular 2D grid, a spherical geometry image. These geometry images offer several advantages for shape compression. First, simple extension rules extend the square image domain to cover the infinite plane, thereby providing a globally smooth surface parametrization. The 2D grid structure permits use of ordinary image wavelets, including higher-order wavelets with polynomial precision. The coarsest wavelets span the entire surface and thus encode the lowest frequencies of the shape. Finally, the compression and decompression algorithms operate on ordinary 2D arrays, and are thus ideally suited for hardware acceleration. In this paper, we detail two wavelet-based approaches for shape compression using spherical geometry images, and provide comparisons with previous compression schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.