Abstract

Part structure and articulation are of fundamental importance in computer and human vision. We propose using the inner-distance to build shape descriptors that are robust to articulation and capture part structure. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that it is articulation insensitive and more effective at capturing part structures than the Euclidean distance. This suggests that the inner-distance can be used as a replacement for the Euclidean distance to build more accurate descriptors for complex shapes, especially for those with articulated parts. In addition, texture information along the shortest path can be used to further improve shape classification. With this idea, we propose three approaches to using the inner-distance. The first method combines the inner-distance and multidimensional scaling (MDS) to build articulation invariant signatures for articulated shapes. The second method uses the inner-distance to build a new shape descriptor based on shape contexts. The third one extends the second one by considering the texture information along shortest paths. The proposed approaches have been tested on a variety of shape databases, including an articulated shape data set, MPEG7 CE-Shape-1, Kimia silhouettes, the ETH-80 data set, two leaf data sets, and a human motion silhouette data set. In all the experiments, our methods demonstrate effective performance compared with other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.