Abstract

For subdivision surfaces, it is important to characterize local shape near flat spots and points where the surface is not twice continuously differentiable. Applying general principles derived in [Computer Aided Geometric Design, doi:10.1016/j.cagd.2004.04.006, in press], this paper characterizes shape near such points for the subdivision schemes devised by Catmull and Clark and by Loop. For generic input data, both schemes fail to converge to the hyperbolic or elliptic limit shape suggested by the geometry of the input mesh: the limit shape is a function of the valence of the extraordinary point rather than the mesh geometry. We characterize the meshes for which the schemes behave as expected and indicate modifications of the schemes that prevent convergence to the wrong shape. We also introduce a type of chart that, for a specific scheme, can help a designer to detect early when a mesh will lead to undesirable curvature behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.