Abstract

Abstract Timber has regained popularity in construction in recent years due to its ecological benefits. The connection methods used in this study play a vital role in the sustainability of structures and materials. Monomaterial timber connections are sustainable alternatives to metal fasteners and adhesives commonly used in construction. Wood is an anisotropic material with dimensional changes resulting from changes in atmospheric conditions. Understanding and accounting for this property are crucial for the longevity and functionality of wooden structures. The cumulative knowledge of wood´s material characteristics and its use in design, construction, and human culture can be defined as wood culture developed through artists’ and craftsmen’s experiences, science, and industry. The development of various techniques by artisans to leverage the dimensional change in wood to join timber elements is a major contribution to wood culture. In contrast, until now, the timber industry has mainly focused on limiting or controlling these changes in standardized production and has neglected their use for joining timber elements. However, technological advances have changed dramatically. The digital manufacturing and analysis of wood structures have the potential to guide machine tools and may allow the integration of dimensional changes, especially in the design and construction of timber joints. This study explores the state-of-the-art utilization of dimensional changes in timber to join elements in craft, material science, and industrial production. The potential of techniques utilizing this behavior for innovation in modern design and construction and their implications for wood culture were examined. Research gaps and avenues for further research are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call