Abstract

An extensive experimental study of the shapes of two-dimensional bipolar droplets of the chromonic nematic phase of disodium cromoglycate (DSCG) sandwiched between glass plates, by Kim et al was published in (2013 J. Phys.: Condens. Matter 25 404202). The paper includes a mathematical model of this system. We have extended this study by further theoretical modelling. Our results are in good, quantitative agreement with the experimental data. The model has produced what promises to be a more accurate estimate for the isotropic surface tension at the nematic/isotropic solution interface—and predicts a regime of shape bistability (which has not yet been observed) for larger droplets, where tactoids (pointed, zeppelin-shaped droplets) and smooth-edged discoids can coexist in equilibrium. The general method presented in this paper is also applied to the tactoids formed by F-actin filaments in solution, for which an estimate is given for the value of the isotropic surface tension at the nematic/isotropic interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.