Abstract

Under the actions of internal pressure and electric voltage, a spherical dielectric elastomer balloon usually keeps a sphere during its deformation, which has also been assumed in many previous studies. In this article, using linear perturbation analysis, we demonstrate that a spherical dielectric elastomer balloon may bifurcate to a nonspherical shape under certain electromechanical loading conditions. We also show that with a nonspherical shape, the dielectric elastomer balloon may have highly inhomogeneous electric field and stress/stretch distributions, which can lead to the failure of the system. In addition, we conduct stability analysis of the dielectric elastomer balloon in different equilibrium configurations by evaluating its second variation of free energy under arbitrary perturbations. Our analyses indicate that under pressure-control and voltage-control modes, nonspherical deformation of the dielectric elastomer balloon is energetically unstable. However, under charge-control or ideal gas mass-control mode, nonspherical deformation of the balloon is energetically stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.