Abstract

This article considers the modeling of the effective properties of the constituent material of structures fabricated by additive manufacturing technologies; the influence of these properties on the design optimization process is analyzed, and the opportunities that they offer in this context are investigated. On the one hand, emphasizing on the case where the particular material extrusion techniques are used for the construction, we propose a model for the anisotropic material properties of shapes depending on the (user-defined) trajectory followed by the machine tool during the assembly of their 2d layers. On the other hand, we take advantage of the potential of additive manufacturing technologies for constructing very small features: we consider the optimization of the infill region of a shape with given external contour with the goal to improve at the same time its lightness and its robustness. The optimized and constraint functionals of the domain involved in the shape optimization problems in both contexts are rigorously analyzed, notably by relying on the notion of signed distance function. Eventually, several numerical experiments are conducted in two dimensions to illustrate the main points of the study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call