Abstract

Silver(I) oxide (Ag2O) micro- and nanoparticles were electrochemically synthesized by anodizing a sacrificial silver wire in a basic aqueous sulfate solution. Ag2O particles were released from the silver electrode surface during synthesis producing a visible sol "stream". The composition of these particles was established using selected area electron diffraction, X-ray diffraction, and X-ray photoelectron spectroscopy. The shape of Ag2O crystallites could be adjusted using the potential of the silver wire generator electrode. The generation of a dispersed Ag2O sol and the observed shape selectivity are both explained by a two-step mechanism involving the anodic dissolution of silver metal, Ag0 --> Ag+(aq) + 1e-, followed by the precipitation of Ag2O particles, 2Ag+ + 2OH- --> Ag2O(s) + H2O. Within 100 mV of the voltage threshold for particle growth, cubic particles with a depression in each face ("hopper crystals") were produced. The application of more positive voltages resulted in the generation of 8-fold symmetric "flower"-shaped particles formed as a consequence of fast growth in the <111> crystallographic direction. The diameter of flower particles was adjustable from 250 nm to 1.8 microm using the growth duration at constant potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.