Abstract

One of the most important mechanical behavior of composite beams subjected to certain external loads and boundary conditions is lateral buckling. The effects of hole dimension, shape and position, and beam thickness on the lateral buckling behavior of woven fabric laminated composite cantilever beams, having two square or two circular holes, were investigated. Firstly, the theoretical, experimental and numerical critical buckling loads of the beams without holes were found and compared with each other. It was shown that there is a good agreement among the theoretical, experimental and numerical results. ANSYS finite element (FEM) program was used for the numerical analyses. Therefore, the numerical analysis of some models with various hole dimensions, shapes (square or circular) and fiber directions were done by changing distance between the holes. It is concluded that the circular holes are advantageous compared to the square ones in terms of lateral buckling behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call