Abstract

This study addresses the classification of objects using their electromagnetic signatures with convolutional neural networks (CNNs) trained on noiseless data. The singularity expansion method (SEM) was applied to establish a compact model that accurately represents the ultra-wideband scattered field (SF) of an object, independently of its orientation and observation angle. To perform the classification, we used a CNN associated with a noise-robust SEM technique to classify different objects based on their characteristic parameters. To validate this approach, we compared the performance of the classifier with and without SEM pre-processing of the SF for different noise levels and for object sizes not present in the training set. Moreover, we propose a procedure that determines the direction of the receiving antenna and orientation of an object based on the residues associated with each complex natural resonance. This classification procedure using pre-processed SEM data is promising and easy to train, especially when generalizing to object sizes not included in the training set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call