Abstract
A physics-based framework for 3-D shape and nonrigid motion estimation for real-time computer vision systems is presented. The framework features dynamic models that incorporate the mechanical principles of rigid and nonrigid bodies into conventional geometric primitives. Through the efficient numerical simulation of Lagrange equations of motion, the models can synthesize physically correct behaviors in response to applied forces and imposed constraints. Applying continuous Kalman filtering theory, a recursive shape and motion estimator that employs the Lagrange equations as a system model is developed. The system model continually synthesizes nonrigid motion in response to generalized forces that arise from the inconsistency between the incoming observations and the estimated model state. The observation forces also account formally for instantaneous uncertainties and incomplete information. A Riccati procedure updates a covariance matrix that transforms the forces in accordance with the system dynamics and prior observation history. Experiments involving model fitting and tracking of articulated and flexible objects from noisy 3-D data are described. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.