Abstract

The genomic DNA in cells of Escherichia coli is localized in one or two compact, phase-like regions with characteristic shapes. Nucleoids undergo progressive changes in shape and compaction in the presence of drugs such as chloramphenicol or puromycin. Forces which influence nucleoid shape and compaction are reviewed, with particular emphasis on crowding effects of the cytoplasm and confinement effects of the cell envelope. Based in part on the theory of Kornyshev and Leikin for interaction between DNA duplexes, the folding of DNA caused by binding of DNA-associated proteins is suggested to antagonize DNA condensation and, thereby, increase access to DNA sequences. These views are incorporated into a working model for nucleoid organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.