Abstract
"Suspensory locomotion" is an expression that encompasses a series of specialized forms of locomotion that mainly orthograde primates use to achieve below-branch traveling. It implies a number of features in the entire body associated with the use of the forelimb in overhead positions. The glenohumeral joint is one of the main joints involved in effective suspensory locomotion, being subject to a delicate balance between the high degree of mobility and stabilization needed to successfully engage in suspensory behaviors. Here, we present a 3D geometric morphometric study that explores the form of the proximal humerus of six orthograde and semi-orthograde genera (Hylobates, Pongo, Pan, Gorilla, Ateles, and Lagothrix) and a pronograde genus, Colobus, to determine to what extent suspensory locomotor requirements are driving the shape of this epiphysis. Results show the presence of a morphocline related to degree of suspension in the shape of the articular surface, with highly suspensory taxa (i.e., Hylobates) exhibiting particular morphological traits at the articular surface that provide a greater range of circumduction. The placement and orientation of the rotator cuff muscles' insertion sites on the tubercles appear associated with the divergent forces operating at the joint in quadrupedal or above-head use of the hand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.