Abstract

Kim and Moon (2017) have recently proposed rectifying control polygons as an alternative to Bézier control polygons and a way of controlling planar PH curves by the rectifying control polygons. While a Bézier control polygon determines a unique polynomial curve, a rectifying control polygon gives a multitude of PH curves. This multiplicity of PH curves naturally raises the selection problem of the “best” PH curves, which is the main topic of this paper.To resolve the problem, we first classify PH curves of degree 2n+1 into 2n subclasses by defining the types of PH curves, and propose the absolute hodograph winding number as a topological index to characterize the topological behavior of PH curves in shape. We present a lower bound of the topological index of a PH curve which is given solely by its type, and prove the uniqueness of the best PH curve by exploiting it. The existence theorems are also proved for cubic and quintic PH curves. Finally, we propose a selection rule of the best PH curve only based on its type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call