Abstract
The information content of a source is defined in terms of the minimum number of bits needed to store the output of the source in a perfectly recoverable way. A similar definition can be given in the case of quantum sources, with qubits replacing bits. In the mentioned cases the information content can be quantified through Shannon's and von Neumann's entropy, respectively. Here we extend the definition of information content to operational probabilistic theories, and prove relevant properties such as the subadditivity and the relation between purity and information content of a state. We prove the consistency of the present notion of information content when applied to the classical and the quantum case. Finally, the relation with one of the notions of entropy that can be introduced in general probabilistic theories, the maximum accessible information, is given in terms of a lower bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.