Abstract

The Shannon information entropy for the Schrödinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position Sx and momentum Sp information entropies for six low-lying states are calculated. We notice that the Sx decreases with the increasing mass barrier width a and becomes negative beyond a particular width a, while the Sp first increases with a and then decreases with it. The negative Sx exists for the probability densities that are highly localized. We find that the probability density ρ(x) for n = 1, 3, 5 are greater than 1 at position x = 0. Some interesting features of the information entropy densities ρs(x) and ρs(p) are demonstrated. The Bialynicki–Birula–Mycielski (BBM) inequality is also tested for these states and found to hold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call