Abstract
Mutation and drift play opposite roles in genetics. While mutation creates diversity, drift can cause gene variants to disappear, especially when they are rare. In the absence of natural selection and migration, the balance between the drift and mutation in a well-mixed population defines its diversity. The Moran model captures the effects of these two evolutionary forces and has a counterpart in social dynamics, known as the voter model with external opinion influencers. Two extreme outcomes of the voter model dynamics are consensus and coexistence of opinions, which correspond to low and high diversity in the Moran model. Here we use a Shannon's information-theoretic approach to characterize the smooth transition between the states of consensus and coexistence of opinions in the voter model. Mapping the Moran into the voter model, we extend the results to the mutation-drift balance and characterize the transition between low and high diversity in finite populations. Describing the population as a network of connected individuals, we show that the transition between the two regimes depends on the network topology of the population and on the possible asymmetries in the mutation rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.