Abstract
We propose a method to calculate the positions of avoided crossings for Rydberg potassium in a static electric field by using Shannon entropy. Our method can be divided into two steps. At first we made a rough estimate of the range of the static electric field strength at which the given avoided crossings occur through strength dependence of the Shannon entropies for all the related states. Next, we obtained the position of the given avoided crossing by calculating the Shannon entropies intersection field strength for the two involved states. The Shannon entropies are calculated by using the one-electron wave functions derived from a well-established diagonalization method which is based on B-spline expansion technique and a parametric one-electron model potential. We have used this method to calculate a number of positions of both s and p states of avoided crossings for Rydberg potassium. The results are in excellent agreement with observed and other calculated results by using the ionization energies. Our study proves that Shannon entropy is an efficient information-theoretic parameter for characterization and prediction of avoided crossings of Rydberg potassium in the l-mixing region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.