Abstract
Indian shield has been frequented by number of large and moderate magnitude damaging earthquakes since historical times, including the recent disastrous ones like Latur Mw 6.3 in 1993, Jabalpur Mw 5.8 in 1997 and Bhuj Mw 7.7 in 2001. Seismogenesis of these events is still not understood well. Detailed study of nine such earthquake localities (as appended in Table 1), indicates quite high P- and S- velocities (6.2–6.7 km/s and 3.65–3.90 km/s respectively) at a shallow depth of almost surface to six kilometers. These seismogenic regions appear to be in a state of continuous uplift and erosion since geological times, which brought mafic (granulitic/amphibolitic) crust to significantly shallow levels in which stresses are accummulated due to ongoing local uplift and a high input of heatflow from the mantle. These stresses act over and above to the regional compressive stresses generated by India-Eurasia collision. As against common belief, the role played by fluids in nucleation of such earthquakes, in the relatively denser and high velocity Indian crust (compared to the other global stable continental regions), appears limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.